
The global population is rapidly increasing and is expected to exceed 9 billion by 2050, resulting in 
signi�cant challenges for agriculture due to factors such as industrialization, reduced farmland, and 
biotic and abiotic stresses. To address these challenges and ensure future sustainability, the 
agriculture system needs to become more productive, e�cient, and resilient. Arti�cial intelligence 
(AI) and machine learning (ML) have emerged as powerful tools to transform the agricultural sector. 
Agricultural productivity is greatly in�uenced by biotic and abiotic stresses, and developing 
climate-smart crops through conventional breeding techniques is time-consuming and challenging. 
Plant phenotyping, which involves measuring speci�c plant features related to function, is crucial in 
breeding for target traits. However, traditional phenotyping methods are laborious, error-prone, and 
less accurate, particularly under stress conditions. To overcome these limitations, researchers have 
focused on developing high-throughput phenotyping technologies. State-of-the-art imaging 
techniques, such as light detection and ranging (LIDAR), remote sensing, and RGB imaging, combined 
with autonomous carriers like unmanned aerial vehicles (UAVs) and ground robots, enable real-time 
and high-throughput phenotyping of morphological, physiological, and stress-related traits. ML tools 
can compartmentalize big data, identify related traits, classify them, quantify their expression, and 
predict their function within the plant system. AI and ML o�er multidisciplinary approaches for 
analyzing big data accumulated over time, leading to the discovery of patterns and systematic data 
of interest, such as stress phenotypes. Using these technologies, researchers worldwide can expedite 
agricultural research and develop climate-smart crops. The future of AI and ML in agriculture is 
promising, as they can lead to new scienti�c discoveries and help overcome the challenges of limited 
resources in food production.
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As per the statistics of the Food and Agriculture Organization 
(FAO) of the United Nations, the population of the world is 
increasing rapidly and is expected to reach beyond 9 billion by 
2050 [1]. Exaggerated population bursts, rapid 
industrialization, decreased farmland, biotic/abiotic stresses, 
and shrinking natural resources are catastrophically a�ecting 
agriculture productivity [2]. To meet the future demand for 
food, feed and fuel, there is an urgent need to push the present 
agriculture system into a new zone so that it can become more 
productive, e�cient, and resilient against biotic/abiotic stresses, 
thus ensuring its sustainability for future generations [3,4]. 
Arti�cial intelligence (AI) and machine learning (ML) are the 
most obvious candidates for addressing the challenge of the new 
zone [5]. Agricultural productivity is inherently a�ected by 
various biotic/abiotic stresses. Nonetheless, plant breeders have 
managed to signi�cantly reduce the damaging e�ect of plant 
stresses by incorporating resistance genes to develop 
climate-smart crops [6,7]. Development of climate-smart crops 
through conventional/molecular breeding techniques is 
time-consuming, and the success dramatically depends upon 
the accuracy and precision of plant phenotyping for the target 
trait [8]. Phenotyping refers to the measurement of speci�c 
features in plants, either morphological, cellular, or canopy 
level, related to plant function that can be exploited to achieve 
their research goals [9]. �e traditional method of phenotyping 

involves the phenotyping of a large plant population of plants 
for multiple traits till the complete life-cycle of plants, which 
requires extensive sampling from growing replicated trials [9]. 
Furthermore, the traditional methods of phenotyping, i.e., 
manual and anatomical, are more error-prone and less 
accurate and thus are the major bottleneck for plant 
phenotyping under stress conditions [8].

 To overcome this challenge, intensive e�orts have been 
made by the scienti�c community to develop and adapt new 
high-throughput technologies in the �eld of plant stress 
phenotyping [8]. For instance, several high-throughput 
imaging technologies are now being exploited that have 
enabled real-time phenotyping not only for morphological 
traits in plants but also for physiological biotic and abiotic 
stress traits [10]. State-of-the-art imaging techniques like light 
detection and ranging (LIDAR), remote sensing, 
spectroradiometers, 3D laser scanning, and trichromatic 
(RGB) imaging in conjunction with autonomous carriers have 
genuinely unlocked the possibility of high-throughput stress 
phenotyping [9]. Additionally, the inclusion of unmanned 
aerial vehicles (UAVs) and ground robots retro�tted with the 
above sensors record real-time images at frequent intervals 
throughout the experimental setup or up to the life cycle of the 
crops [10]. Phenotyping of traits using an AI-imaging 
approach results in the accumulation of a large amount of 

data, which is subsequently stored and analyzed to make 
practical interpretations for its application in a breeding 
program [11]. Interestingly, one of the most e�ective ways of 
making sense of all the collected data is by integrating ML 
tools with AI [12]. �e exploitation of ML tools is new in the 
plant stress phenotyping is employed to compartmentalize big 
data into small units by identifying related traits, classifying 
them into speci�c groups, quantifying according to their 
relative expression, and �nally, predicting their overall 
function within plant system [13].

 AI and ML are integrally multidisciplinary approaches 
that perform big-data analysis, which has been accumulated 
gradually over time to produce systematic data of interest, i.e., 
stress phenotype [14]. �e exploitation of AI in conjunction 
with the ML approach has enabled plant breeders, 
pathologists, physiologists, and biologists to analyze largely to 
discover patterns by using combinations of factors 
simultaneously instead of analyzing all the combinations 
individually [13]. AI coupled with ML exploits probability 
theory, decision statistics, visualization of patterns, and 
optimization to create a holistic model that includes genetic, 
agronomic, environmental, and anthropogenic factors to 
unravel the e�ect on plant stress response and, ultimately, 
yield [9]. In addition, plant scientists have performed 
high-throughput phenotyping using AI-�tted sensors to 
measure morphological traits at di�erent growth stages in 
Gossypium hirsutum, Zea mays, and triticale [8]. Further, 
researchers have corroborated that complementing 
AI/ML-driven high-throughput phenotyping of plant 
stress-related traits with a next-generation sequencing 
platform may reveal novel quantitative trait loci (QTLs) 
associated with the query stress [9,15]. �e integration of 
high-throughput phenotyping data with QTLs obtained can 
be used to bridge the genotype-phenotype gap and can be 
used as a model for other stress-related traits in plants [10,15]. 
Additionally, combining real-time phenotypic data with 
real-time gene expression data obtained through AI-driven 
platforms such as UAVs and ground robots is integrated with 
a viable ML approach that can provide new insight into the 
cellular and molecular mechanism underlying stress tolerance 
in plants [8].

 AI-coupled with ML, gives a realistic transformation of 
phenotyping and big data visualization that will reform the 
pattern and limit of traditional agricultural systems. �ese AI 
and ML will pave the way for another agricultural revolution 
to produce more food using limited resources in these trying 
times. Scientists worldwide are employing AI/ML 
technologies around the globe to expedite their agricultural 
research for developing climate-smart crops by performing 
high-throughput phenotyping for stress resistance/tolerance. 
Several notable instances of arti�cial intelligence and machine 
learning applications within the �eld of plant stress 
phenotyping encompass the i-Plant initiative and an 
integrated analytical platform. �ese technologies hold 
promise for facilitating the execution of multifaceted research 
endeavors. �e future of AI/ML technologies is bene�cial in 
agriculture, which, if executed accurately employing curated 
pipeline and its crucial ingredient, i.e., big-data analysis, can 
lead to new scienti�c discoveries.
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